A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
نویسندگان
چکیده
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached. Keywords—Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
منابع مشابه
A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملGenome-wide selection of tag SNPs using multiple-marker correlation
MOTIVATIONS The tag SNP approach is a valuable tool in whole genome association studies, and a variety of algorithms have been proposed to identify the optimal tag SNP set. Currently, most tag SNP selection is based on two-marker (pairwise) linkage disequilibrium (LD). Recent literature has shown that multiple-marker LD also contains useful information that can further increase the genetic cove...
متن کاملTag SNP selection in genotype data for maximizing SNP prediction accuracy
MOTIVATION The search for genetic regions associated with complex diseases, such as cancer or Alzheimer's disease, is an important challenge that may lead to better diagnosis and treatment. The existence of millions of DNA variations, primarily single nucleotide polymorphisms (SNPs), may allow the fine dissection of such associations. However, studies seeking disease association are limited by ...
متن کاملMLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression
UNLABELLED The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has recently received great attention. For these studies, it is essential to use a small subset of informative SNPs accurately representing the rest of the SNPs. Informative SNP selection can achieve (1) considerable budget savings by genotyping only a limited number of SN...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014